Что такое ДВС в автомобиле — расшифровка

Называть двигатель сердцем автомобиля – сравнение банальное, но точное. Можно сколько угодно перебирать подвеску, настраивать рулевое управление или совершенствовать тормоза – если мотор не в порядке, всё это превращается в пустую трату времени.

Сегодня на дорогах можно встретить автомобили разных поколений: и со старенькими карбюраторными ДВС, и с мощными дизельными моторами, управляемыми электроникой, и даже новейшие водородные двигатели, которые еще только начинают совершенствоваться. И во всём этом разнообразии довольно сложно сориентироваться, если не знать основ и принципов работы двигателя внутреннего сгорания.

Блок: 1/7 | Кол-во символов: 626
Источник: https://VazNeTaz.ru/dvigatel-dvs

Содержание

Системы двигателя

Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:

  1. ГРМ (механизм регулировки фаз газораспределения);
  2. Система смазки;
  3. Система охлаждения;
  4. Система подачи топлива;
  5. Выхлопная система.

ГРМ — газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

  • Распределительный вал;
  • Впускные и выпускные клапаны с пружинами и направляющими втулками;
  • Детали привода клапанов;
  • Элементы привода ГРМ.

ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.

Система смазки

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

  • Масляный картер (поддон);
  • Насос подачи масла;
  • Масляный фильтр с редукционным клапаном;
  • Маслопроводы;
  • Масляный щуп (индикатор уровня масла);
  • Указатель давления в системе;
  • Маслоналивная горловина.

Система охлаждения

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

  • Рубашка охлаждения двигателя;
  • Насос (помпа);
  • Термостат;
  • Радиатор;
  • Вентилятор;
  • Расширительный бачок.

Система подачи топлива

Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак;
  • Датчик уровня топлива;
  • Фильтры очистки топлива — грубой и тонкой;
  • Топливные трубопроводы;
  • Впускной коллектор;
  • Воздушные патрубки;
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.

Выхлопная система

Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор;
  • Приемная труба глушителя;
  • Резонатор;
  • Глушитель;
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

Блок: 4/4 | Кол-во символов: 3885
Источник: https://wikers.ru/articles/ustrojstvo-dvigatelya.html

Виды ДВС

В зависимости от типа рабочего механизма все разнообразие ДВС можно разделить на несколько категорий, встречаются:

  • Газотурбинные;
  • Роторные;
  • Поршневые.

Именно за счет этих механизмов в камере сгорания может осуществляться процесс превращения тепловой энергии в движущую силу, собственно за счет поршня, ротора или турбины. Давайте рассмотрим принцип работы каждого типа ДВС более подробно.

Газотурбинный двигатель

Работа газотурбинного двигателя основана на том, что топливо, воспламеняясь, толкает лопасти турбины. Другими словами происходит вращение лопастей за счет расширяющегося газа. И чем выше температура горения топлива, тем больше КПД у данного двигателя.

В свою очередь различают одновальные и двухвальные газотурбинные двигатели. Одновальные моторы имеют одну турбину, двухвальные — две. Помимо этого двухвальные агрегаты выдерживают большую нагрузку, чем одновальные. Такие двигатели чаще всего можно встретить в грузовых автомобилях, на кораблях, локомотивах, самолетах.

Роторный ДВС

Принцип работы роторного двигателя основан на постоянном вращении ротора с переменной тактов работы. Роторный двигатель имеет всего лишь один поршень, который одновременно и является ротором. Он вращается в цилиндре специальной формы, приспособленной для него.

Ротор в свою очередь соединен с валом и зубчатой передачей со стартером. Его лопасти при вращении ротора попеременно перекрывают камеру, где и сгорает топливо. Такой мотор имеет сбалансированную конструкцию, небольшой вес и компактный размер. Однако топлива подобный агрегат потребляет на 100 километров пути гораздо больше, чем поршневой двигатель.

Роторный двигатель в разное время ставился на некоторые модели «Мерседес», «Шевроле» и «Ситроен». Также в прошлом двигатель такой конструкции устанавливали и на моделях «ВАЗ-2108″ и » ВАЗ-2109″. В настоящее время роторный мотор можно увидеть на модели RX8 концерна «Мазда». Однако с 2012 года ее производство прекращено. На данный момент концерн готовит к выпуску новую модель спорткара «Мазда RX-9».

Поршневой двигатель

В ДВС с поршневым принципом работы камера сгорания находится внутри цилиндра, где сам поршень выполняет функцию подвижной части, которая в зависимости от этапа сгорания топлива и такта работы мотора поднимается или опускается. В свою очередь в двигателе автомобиля может находиться определенное число цилиндров. Их поршни через передаточный механизм приводят в движение коленвал, который и преобразует возвратно-поступательное движение поршня во вращательное, что в конечном итоге и позволяет колесам автомобиля вращаться.

Поршневой двигатель самый распространенный в автостроении из-за своих положительных характеристик:

  • Высокой мощности и надежности, в сравнении с другими типами ДВС;
  • Лучшей экономичности;
  • А также благодаря своим достаточно компактным размерам.

Классификация ДВС поршневого типа

Данные типы двигателей можно классифицировать по используемому горючему, встречаются:

  • Бензиновые;
  • Дизельные;
  • Газовые ДВС.

Также двигатели поршневого типа можно классифицировать по системе зажигания, они разделяются:

  1. На ДВС с принудительным воспламенением топлива;
  2. На двигатели, в которых топливо самовоспламеняется от сжатия.

В двигателях первого типа с принудительным возгоранием поджиг горючей смеси происходит за счет электрической искры, которая вырабатывается системой зажигания и подается через свечу прямо в цилиндры. В качестве топлива в них чаще всего используется бензин, реже можно встретить модели, работающие на газе.

Помимо этого бензиновые двигатели могут также различаться и способом подачи горючей смеси в рабочую камеру сгорания. Делятся они на карбюраторные и инжекторные системы.

Дизельные же двигатели относятся к моторам, где возгорание топлива осуществляется самопроизвольно, от сжатия его поршнем. В ДВС этого типа используется преимущественно наиболее экологическое дизельное топливо, но при необходимости двигатель может работать и на других горючих жидкостях, начиная от керосина и мазута, и заканчивая рапсовым и пальмовым маслом.

В свою очередь двигатели внутреннего сгорания также различаются количеством тактов в рабочем цикле. Встречаются четырехтактные и двухтактные моторы. Каждый из них имеет свои как положительные стороны, так и отрицательные. Однако четырехтактные ДВС самые распространенные из всех поршневых. Двухтактные же моторы в современных автомобилях не используются.

Поршневые типы двигателей по расположению цилиндров в моторе также разделяются на несколько подвидов, самыми распространенными из них являются:

  • Рядные двигатели. В ДВС данной конструкции цилиндры выстроены в один ряд, и поршни вращают общий коленвал. Такие двигатели также обозначаются индексом «Rx», где X — число цилиндров.
  • V-образные моторы. Этот тип двигателя отличается от предыдущего тем, что цилиндры в нем расположены напротив друг друга в виде буквы «V», при этом могут образовывать угол от 10 до 120 градусов. Такая конструкция в свою очередь позволяет значительно уменьшить длину двигателя.
  • Vr-образная конструкция представляет собой нечто среднее между рядным и V-образным двигателем. При этом угол между цилиндрами в нем максимально мал, всего 15 градусов.
  • Оппозитные ДВС. Отличительной особенностью этих двигателей является угол между цилиндрами, который составляет целых 180 градусов.

Устройство двигателя внутреннего сгорания

В первую очередь необходимо помнить, что ДВС состоит из множества составляющих элементов и вспомогательных систем, являющихся составной частью двигателя. Для упрощения их можно сгруппировать в следующе группы:

  • Кривошипно-шатунный механизм;
  • Газораспределительный механизм;
  • Система смазки и охлаждения;
  • Топливная и выхлопная система;
  • Система зажигания.

Давайте разберем каждую часть более подробно.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм – одно из важнейших устройств в поршневом двигателе. Именно этот механизм выполняет две важные функции в машине — вырабатывание тепла и преобразование этой энергии в механическую работу. Состоит данный механизм из следующих деталей:

  • Блок цилиндров;
  • Головка блока цилиндров (ГБЦ);
  • Системы передачи движений от поршней на коленчатый вал;
  • Коленвал с маховиком.

Блок цилиндров является основой, на которой размещается множество навесных частей мотора, таких как ГБЦ и картер. Помимо этого также выполняет функцию каркаса для размещения в нем цилиндров.

Газораспределительный механизм

В свою очередь головка блока цилиндров является основой для такого важного составляющего мотора как механизм газораспределения, который расположен в полости головки, называемой картер. Именно за счет данного механизма в цилиндры своевременно поступает необходимое количество топливной смеси, а также выводятся продукты сгорания из цилиндров. Осуществляется этот процесс за счет клапанов, которые открываются и закрываются в определенный промежуток времени на разных этапах работы двигателя.

Механизм газораспределения состоит также из множества составляющих, к ним относятся такие элементы как:

  • Распределительный вал. В зависимости от конкретного двигателя распредвал может быть один или их может быть два на каждый ряд цилиндров.
  • Клапана, которые делятся на впускные и выпускные.
  • Различные детали привода клапанов и элементов газораспределительного механизма.

Механизм газораспределения приводится в действие от коленвала, связан с распредвалом посредством ремня или цепи, который при вращении с помощью передаточных систем и нажимает на клапана, тем самым заставляя их в нужный момент открываться и закрываться. Все это крепится на специальной площадке головки блока цилиндров. ГБЦ же присоединяется к блоку цилиндров с помощью особых винтов и специальной соединительной прокладки.

Система питания

Работа системы питания заключается в создании горючей смеси путем смешивания воздуха с топливом в определенных пропорциях, оптимальных для работы двигателя.

  1. В карбюраторных моторах процесс смешивания протекает в самом карбюраторе за счет разницы давления, возникающего при работе поршня в цилиндре. Затем данная смесь попадает в рабочие камеры цилиндров через впускной коллектор и клапаны.
  2. В инжекторных ДВС процесс приготовления топливной смеси происходит во впускном коллекторе (встречаются и исключения). В двигателях этой конструкции топливо под высоким давлением впрыскивается в коллектор через такие элементы как форсунки, после чего и происходит смешивание бензина с воздухом.

В отличие от карбюраторного двигателя, насос которого является механическим, в инжекторной системе установлен электрический. Он позволяется обеспечить нужное давление в системе при подаче бензина. Весь этот процесс контролируется электронной системой автомобиля. Путем сбора информации с множества датчиков компьютер решает, в какой момент следует произвести подачу бензина. Одновременно с этим открывается нужный клапан, и готовая топливная смесь подается в цилиндр.

Система зажигания

Система зажигания предусмотрена в конструкциях только бензиновых ДВС. Работа данной системы заключается в поджиге топливной смеси в камере сгорания. Происходит это действие в определенный промежуток времени с помощью свечи зажигания. Между электродами свечи проскакивает электрическая искра, которая и воспламеняет горючую смесь в нужный момент.

В дизельных же двигателях системы зажигания попросту нет, поскольку топливо в ДВС этой конструкции самовоспламеняется за счет сжатия. Вместо свечи в них установлена форсунка высокого давления, которая впрыскивает дизельное топливо под высоким давлением прямо в цилиндр. Причем это происходит в тот момент, когда воздух в цилиндре уже сжат и разогрет порядка до 700 градусов. Именно при этой температуре дизтопливо способно самовоспламеняться, что и происходит практически сразу после его впрыска в цилиндр.

Выхлопная система

Выхлопная система служит для отвода отработанных газов из камеры сгорания наружу. В первую очередь отработавшие газы попадают из головки блока цилиндров в выпускной коллектор. Он собирает газы из каждого цилиндра индивидуально и направляет их в одну трубу.

Далее отработавшие газы проходят через каталитический нейтрализатор, где вредные газы превращаются в менее опасные. Хотя его может и не быть, если автомобиль достаточно старый. Тогда газы поступают сразу в глушитель, который уменьшает шум выхлопа, после чего они просто выходят через выхлопную трубу.

Стоит отметить, что выхлопная труба обычно располагается в задней части автомобиля, поскольку именно оттуда выхлопные газы имеют меньше всего шансов попасть в салон.

Система смазки

Итак, мы с вами познакомились с двумя механизмами, которые применяются в автомобильном двигателе, это кривошипно-шатунный и механизм газораспределения. Стоит обратить внимание на то, что детали этих механизмов соприкасаются друг с другом и двигаются относительно друг друга. Как известно из школьного курса физики трущиеся детали приводят к износу друг друга, то есть они просто изнашиваются и для того чтобы снизить износ, как правило, используют смазывающие средства. В автомобильных двигателях для смазки трущихся деталей, снижения их износа и уменьшения силы трения между деталями для увеличения КПД мотора применяется система смазки.

На этой схеме мы видим часть системы смазки, внизу располагается так называемый картер, это некий поддон в котором находится смазочное масло. В первую очередь масло под давлением подается в масляный фильтр, там очищается и по одним каналам попадает к коренным и шатунным подшипникам коленчатого вала. По другим каналам масло подводится в газораспределительный механизм, поскольку распредвал также испытывает трение и соответственно должен смазываться.

После того как масло сделало свое дело, смазало все необходимые детали, оно стекает по каналам обратно в поддон. Таким образом, происходит круговорот, стекающее масло через сетку попадает в масляный насос, затем в фильтр, после в систему смазки, возвращается в картер и опять по кругу.

Стоит отметить, если по каким-то причинам масло не может попасть в фильтр, то при превышении давления определенного значения открывается редукционный клапан и лишнее масло стекает обратно в поддон, что предотвращает поломку масляного насоса. Также на некоторых мощных моторах в системе предусматриваются еще и радиаторы для того, чтобы это моторное масло охлаждать.

Система охлаждения

Как известно во время работы ДВС выделяется большое количество тепла. Цилиндр двигателя может нагреться до нескольких сотен градусов. Поэтому для того чтобы отвести лишнее тепло от самых разогреваемых деталей применяется система охлаждения двигателя.

Для этого в автомобильных моторах предусмотрены специальные полости, которые заполнены охлаждающей жидкостью. И вот эта жидкость, двигаясь по системе охлаждения, принудительно омывает стенки цилиндров и другие наиболее горячие элементы, отбирая у них тепло.

Практически во всех современных ДВС установлена система охлаждения жидкостного типа, которая состоит из следующих элементов:

  • Радиатор с вентилятором системы охлаждения;
  • Термостата;
  • Водяной помпы;
  • Расширительного бачка;
  • Радиатора и вентиляторов системы отопления салона;
  • Датчика температуры охлаждающей жидкости.

Принцип работы системы охлаждения на всех двигателях примерно одинаков. В целом работает система в двух режимах:

  1. До температуры срабатывания термостата. Когда охлаждающая жидкость в системе течет по малому кругу, протекает лишь в самом двигателе.
  2. Выше температурного порога срабатывания термостата. Когда температура охлаждающей жидкости превышает заданный температурный порог, при котором срабатывает термостат. При этом внутренние каналы системы охлаждения переключаются, и жидкость начинает течь по большому кругу, в частности через радиатор охлаждения.

Температура срабатывания термостата, как правило, составляет около 90 градусов. На разных моделях автомобилей это значение может немного отличаться. Таким образом, данная система не позволяет двигателю перегреться, отводя тепло от самых горячих элементов и поддерживая оптимальную температуру работы мотора.

Такты работы двигателя внутреннего сгорания

Тактом называют процесс, который происходит в цилиндре за одно движение поршня в нижнюю или верхнюю мертвую точку, а сумму этих тактов, как правило, называют рабочим циклом ДВС. Как уже было сказано выше, бывают двухтактные и четырехтактные двигатели.

Четырехтактный ДВС

Если ДВС осуществляет четыре этапа рабочего цикла, то двигатель называют четырехтактным. Давайте разберем каждый такт данного типа двигателя более детально.

  1. Первый такт называется «впуск». Он сопровождается образованием горючей смеси из поступающего топлива и воздуха. Далее происходит подача горючей смеси в камеру сгорания через впускной клапан за счет снижения давления в цилиндре, когда поршень движется вниз.
  2. Второй такт определяется как «сжатие». В этот момент впускной клапан закрывается, и поршень поднимается в верхнюю мертвую точку, сжимая топливо. Таким образом, первые два такта производят один поворот коленвала.
  3. Третий такт имеет название «рабочий ход». Топливо поджигается искрой от системы зажигания, либо оно впрыскивается и самовоспламеняется от сжатия в случае дизельного ДВС. После чего в камере сгорания происходит воспламенение горючей смеси с образованием большого количества продуктов распада. Благодаря этому явлению давление в цилиндре резко увеличивается, опуская при этом поршень в низ. Такое движение поршня запускает второй оборот коленвала.
  4. Последний такт называется «выпуск». Данный процесс сопровождается открытием выпускного клапана, после чего поршень снова поднимается вверх и выхлопные газы просто выводятся из камеры цилиндра через открытый клапан.

Рабочий цикл четырехтактного ДВС, благодаря движению поршней в моторе, позволяет произвести два оборота коленчатого вала, которые в конечном итоге и преобразуются во вращение колес.

Двухтактный мотор

В двухтактных же моторах, полный рабочий цикл протекает всего за два этапа работы поршня, называемых:

  1. Сжатие;
  2. Рабочий ход.

Такт «сжатия» начинается с движения поршня из нижнего положения в верхнее. В этот момент происходит единый процесс газообмена, называемый продувкой, при котором закрывается сначала продувочное, а потом и выпускное отверстие. Далее происходит процесс сжатия топливной смеси поршнем. Одновременно с этим в картере под поршнем создается разряжение, благодаря этому через открытый впускной клапан в кривошипную камеру подается топливная смесь.

Такт «рабочий ход» берет свое начало уже с верхнего положения поршня, когда сжатая горючая смесь воспламеняется от искры. После этого происходит расширение сгорающего топлива, и поршень начинает двигаться в низ. Этим действием поршень также создает давление в картере под кривошипной парой и тем самым закрывает впускной клапан, не позволяя газам попасть обратно во впускной коллектор.

После того как поршень достигнет выпускного отверстия, давление газов в цилиндре начнет снижаться, выхлопные газы устремляются на выпуск. Опускаясь все ниже, поршень открывает продувочное отверстие, и топливная смесь под давление перемещается в цилиндр, вытесняя остатки выхлопных газов. Далее цикл повторяется снова.

Это все что мы хотели сказать по данному вопросу, теперь вы знаете, как работает ДВС, что это такое в машине и из чего он состоит. Надеемся, что данный материал оказался для вас полезным. Будем рады увидеть ваше мнение в комментариях.

Понравилась статья? Поделись с другими!

Блок: 3/3 | Кол-во символов: 17094
Источник: https://auto-pos.ru/181-dvs-chto-eto-takoe-v-mashine.html

Принцип работы двигателя

Во всех ДВС, какой бы конструкции они ни были, используется один и тот же принцип работы. Это преобразование энергии теплового расширения при сгорании топлива сначала в прямолинейное, а затем во вращательное движение.

Принцип работы четырехтактного двигателя

Такты четырехтактного двигателя

Четырехтактные двигатели используются во всех автомобилях, крупной технике, авиации. Это так называемый классический вид ДВС, которому конструкторы уделяют всё свое внимание. Условно работу каждого цилиндра в ЦПГ можно разделить на 4 этапа (такта). Это впуск, сжатие, сгорание, выпуск. На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации.

  1. На такте впуска поршень в цилиндре движется вниз, от клапанов к нижней мертвой точке (НМТ). Когда он начинает опускаться, открывается впускной клапан и в цилиндр поступает топливно-воздушная смесь (или только воздух, если двигатель с непосредственным впрыском). При движении поршень сам «накачивает» нужный объем воздуха в камеру сгорания, если двигатель атмосферный, или воздух поступает под напором, если установлен турбонаддув.
  2. Дойдя до нижней мертвой точки поршень начинает подниматься. При этом впускной клапан закрывается, и при движении поршень сжимает воздух с распыленным в нём топливом до критического давления.
  3. Как только поршень условно доходит до верхней мертвой точки и компрессия становится максимальной, срабатывает свеча зажигания и топливо вспыхивает (дизтопливо зажигается при сжатии само, без искры). Микровзрыв от вспышки толкает поршень снова вниз, к НМТ.
  4. И на четвертом такте открывается выпускной клапан. Поршень снова движется вверх, выдавливая из камеры сгорания выхлопные газы в выпускной коллектор.

Работа четырехтактного двигателя

По сути, полезной работы в двигателе только один такт из четырех, когда при сгорании топлива создается избыточное давление, толкающее поршень. Остальные три такта нужны как вспомогательные, которые не дают импульса к движению, но на них расходуется энергия.

При таких условиях двигатель мог бы остановиться, когда кривошипно-шатунный механизм (КШМ) приходит к энергетическому равновесию. Но чтобы этого не произошло, используется  большой маховик, соединенный с системой сцепления, и противовесы на коленвале, уравновешивающие нагрузки от работы поршней.

Принцип работы двухтактного двигателя

Такты двухтактного двигателя

Двухтактные двигатели используются не слишком широко. В основном это моторы скутеров и мопедов, легких моторных лодок, газонокосилок. Весь рабочий процесс такого двигателя можно разделить на два основных этапа:

  1. В начале движения поршня снизу вверх (от нижней мертвой точки к верхней) в камеру сгорания поступает топливно-воздушная смесь. Поднимаясь, поршень сжимает ее до критической компрессии, и когда он находится в верхней мертвой точке, происходит поджиг.
  2. Сгорая, топливо толкает поршень вниз, при этом одновременно открывается доступ к выпускному коллектору и продукты сгорания выходят из цилиндра. Как только поршень достигает нижней мертвой точки (НМТ), повторяется первый такт – впуск и сжатие одновременно.

Работа двухтактного двигателя

Казалось бы, двухтактный двигатель должен быть вдвое эффективней четырехтактного, ведь здесь на полезное действие приходится половина работы. Но в реальности мощность двухтактного двигателя намного ниже, чем хотелось бы, и причина этого кроется в несовершенном механизме газораспределения.

При сгорании топлива часть энергии уходит в выпускной коллектор, не выполняя никакой работы кроме нагрева. В итоге, двухтактные двигатели применяются только в маломощном транспорте и требуют особых моторных масел.

Блок: 4/7 | Кол-во символов: 3609
Источник: https://VazNeTaz.ru/dvigatel-dvs

Такт впуск

Во время этого такта обе системы (впускная и топливная) обеспечивают образование воздушно-топливной массы. Учитывая разную конфигурацию моторов и конструкцию, образование смеси может происходить непосредственно во впускном коллекторе или же в самой камере сгорания. В момент, когда происходит открытие впускных клапанов ГРМ, воздух или уже топливно-воздушная смесь перемещается непосредственно в камеру сгорания, под воздействием силы разряжения, во время движения поршня.

Блок: 4/7 | Кол-во символов: 491
Источник: https://quest-auto.ru/582-chto-takoe-dvs.html

Такт сжатия

Во время сжатия, соответствующие впускные клапаны перекрываются, и происходит сжимание топливно-воздушной смеси в цилиндрах.

Блок: 5/7 | Кол-во символов: 139
Источник: https://quest-auto.ru/582-chto-takoe-dvs.html

Классификация двигателей

Поскольку ДВС растут и совершенствуются уже более 100 лет, набралось довольно много их разновидностей. Классифицируют двигатели по разным признакам и свойствам.

По рабочему циклу

Это уже известное нам деление двигателей на двухтактные и четырехтактные.

  1. Двухтактные – один полный рабочий цикл состоит из двух этапов, при этом коленвал совершает один оборот;
  2. Четырехтактные – за один полный рабочий цикл проходит четыре этапа, а коленвал делает два оборота.

По типу конструкции

Есть два основных типа ДВС: поршневой и роторный.

  1. Поршневой – это тот самый привычный нам двигатель с поршнями, цилиндрами и коленвалом, который стоит практически в любом транспорте;
  2. Роторно-поршневой, он же двигатель Ванкеля – особый вид ДВС, в котором вместо поршня используется трехгранный ротор, а камера сгорания имеет овальную форму. Двигатель Ванкеля использовался в некоторых моделях автомобилей, но сложность производства и обслуживания заставила инженеров отказаться от применения этой конструкции.

Работа роторного двигателя

По количеству цилиндров

В ЦПГ двигателя может устанавливаться от 1 до 16 цилиндров, для легковых автомобилей это обычно 3-8. Как правило, конструкторы предпочитают четное количество цилиндров, чтобы уравновесить циклы их работы. Самое известное исключение из правил – двигатель Ecoboost, разработанный концерном Ford, во многих моделях которого ставится как раз три цилиндра.

По расположению цилиндров

Компоновка ЦПГ не всегда рядная (хоть рядный двигатель – самый простой в ремонте и обслуживании). В зависимости от фантазии инженеров, двигатели делятся на несколько типов компоновки:

  1. Рядные – все цилиндры выстроены в один ряд и на один коленвал.

    Работа рядного двигателя

  2. V-образные – два ряда цилиндров, установленные под углом от 45 до 90 градусов на один коленвал.

    Работа V-образного двигателя

  3. VR-образные – два ряда цилиндров с маленьким углом развала, 10-20 градусов, установленные на один коленвал.

    Работа VR-образного двигателя

  4. W-образные – представляют собой блок из 3 или 4 рядов цилиндров, установленных на один коленвал.

    Работа W-образного двигателя

  5. U-образные – два параллельных ряда цилиндров, установленные на два коленвала, объединенных в один силовой блок.

    Работа U-образного двигателя

  6. Оппозитные – с двумя рядами цилиндров, установленными горизонтально под 180 градусов друг к другу на один коленвал.

    Работа оппозитного двигателя

  7. Встречные – особая конструкция двигателя, в котором на каждый цилиндр приходится два поршня, движущихся во встречных направлениях. По сути, это одна цилиндро-поршневая группа, установленная на два коленвала.

    Работа встречного двигателя

  8. Радиальные – с круговым размещением ЦПГ, установленной на коленвал, расположенный в центре.

Работа радиального двигателя

В легковых автомобилях используются рядные, V-, VR-, W- и U-образные двигатели, а в некоторых моделях и оппозитные. А вот радиальные применяются в авиационной технике.

По типу топлива

Классика жанра здесь – бензиновые и дизельные двигатели. Набирают популярность газовые, постепенно совершенствуются гибридные и водородные.

  1. Бензиновые двигатели требуют поджига топливно-воздушной смеси. Для этого используются свечи и катушки зажигания, работающие синхронно с движением коленвала. Особенность бензиновых двигателей – способность развивать большую скорость;
  2. Дизельные двигатели работают по принципу самовоспламенения топливно-воздушной смеси. В них нет свечей зажигания, зато есть система прямого впрыска, требующая подачи топлива под большим давлением. Для запуска двигателя используются свечи накаливания, которые предварительно подогревают воздух и отключаются после прогрева камеры сгорания. Дизельные двигатели способны развивать большую мощность, но не скорость, поэтому используются в тяжелой технике;
  3. Газовые установки популярны за счет низкой стоимости сжиженного газа (по сравнению с бензином). Газовые двигатели работают при более высоких температурах, чем бензиновые или дизельные, что, в свою очередь, требует качественной работы системы охлаждения и особого моторного масла;
  4. Гибридные – это комбинация ДВС и электромотора. В стандартном режиме вождения задействован только электрический мотор, а ДВС задействуется при необходимости повысить нагрузку или подзарядить аккумуляторы;
  5. Водородные двигатели до недавнего времени были довольно опасны: кислород и водород, выработанные из воды путем электролиза, сгорали нестабильно и с риском детонации. Сравнительно недавно был найден другой способ использования водородно-кислородного соединения: водород заправляется в баки (причем заправка длится около 3 минут), кислород захватывается из воздуха, после чего они поступают на электрогенератор, а не в ДВС. По сути, получается процесс, обратный процессу электролиза, в результате которого образуется электроэнергия и вода. Первым автомобилем с водородной силовой установкой стала Toyota Mirai.

По принципу работы ГРМ

Ключевой элемент газораспределительного механизма – распредвал, объединенный с коленвалом двигателя с помощью ремня или цепи ГРМ. Распредвал за счет своей конструкции регулирует работу клапанов, и вся система работает синхронно с частотой оборотов двигателя. Обрыв ремня ГРМ – почти всегда путь на капремонт.

В зависимости от компоновки ЦПГ в двигателе может стоять 1 распредвал, если двигатель рядный, или 2-4 распредвала, если это V-образная компоновка.

Однако стандартная система ГРМ перестала отвечать современным требованиям к мощности и экономичности двигателей. И теперь, кроме стандартной механической системы, есть адаптивные системы, такие как Honda i-VTEC, VTEC-E и DOHC, Toyota VVT-i, Mitsubishi MIVEC, разработки компаний Volkswagen и Eco-Motors, а также пневматическая система ГРМ, установленная на Koenigsegg Regera и в перспективе добавляющая 30% мощности двигателю.

По принципу подачи воздуха

Еще одна классификация, которая часто встречается в обиходе: деление двигателей на атмосферные и турбированные.

  1. Атмосферный двигатель – это тот самый ДВС, который затягивает порцию воздуха при движении поршня в цилиндре вниз. Подача кислорода идет стандартным способом;
  2. Турбина (турбокомпрессор) – это дополнительная подкачка воздуха в камеру сгорания. Турбокомпрессор работает за счет потока выхлопных газов, вращающих турбину, которая, в свою очередь, нагнетает крыльчаткой воздух во впускной коллектор.

Работа двигателя с турбиной

Турбированные двигатели имеют свои преимущества и недостатки: с одной стороны, чем больше воздуха, тем больше мощности может развить двигатель. С другой – эффект турбоямы способен серьезно попортить нервы любителю спортивной езды. Да и лишний узел – лишнее слабое место, так что турбированные двигатели (или битурбо, как называют мотор с двумя турбинами) нравятся далеко не всем. Иногда хорошо собранный атмосферник может «заткнуть за пояс» любой наддув.

Блок: 5/7 | Кол-во символов: 6764
Источник: https://VazNeTaz.ru/dvigatel-dvs

Рабочий ход

Данный такт сопровождается образованием пламени, в зависимости от типа топлива, как уже говорилось принудительно или самостоятельно. В результате этого происходит образование большого количества газов. А те уже в свою очередь давят на сам поршень, заставляя двигаться вниз. А благодаря кривошипно-шатунному механизму движение поршня преобразуются в движения вращательного характера, передающиеся на коленчатый вал, последний используется в свою очередь для движения автомобиля.

Блок: 6/7 | Кол-во символов: 495
Источник: https://quest-auto.ru/582-chto-takoe-dvs.html

Преимущества и недостатки ДВС

  1. Если говорить о преимуществах двигателей внутреннего сгорания, то на первое место выйдет удобство для пользователя. За столетие бензиновой эпохи мы обросли сетью АЗС и даже не сомневаемся, что всегда будет возможность заправить машину и ехать дальше. Есть риск не встретить заправочную станцию – не беда, можно взять с собой бензин в канистрах. Именно инфраструктура делает использование ДВС таким комфортным.
  2. С другой стороны, заправка двигателя топливом занимает пару минут, проста и доступна. Залил бак – и едь себе дальше. Это не идет ни в какое сравнение с подзарядкой электромобиля.
  3. Способность служить долго при грамотном обслуживании – то, чем могут похвастаться знаменитые двигатели-миллионники. Регулярное своевременное ТО способно сохранить работоспособность мотора на очень долгий срок.
  4. И, конечно, не будем забывать про милый сердцу рев мощного мотора. Настоящий, честный, совершенно не похожий на озвучку современных электрокаров. Не зря же некоторые автоконцерны специально настраивали звук двигателей своих машин.

Какой же основной недостаток у ДВС?

  1. Конечно, это низкий КПД — в пределах 20-25%. Самый высокий на сегодняшний день показатель КПД среди ДВС – 38%, который выдал двигатель Toyota VVT-iE. По сравнению с этим электромоторы смотрятся гораздо выигрышней, особенно с системами рекуперативного торможения.
  2. Второй значительный минус – это общая сложность всей системы. Современные двигатели давно перестали быть такими «простачками», как описывается в схеме классического ДВС. Наоборот, требования к моторам становятся всё выше, сами моторы – более точными и сложными, появляются новые технологии и инженерные решения. Всё это дополнительно усложняет конструкцию двигателя, и чем она сложней, тем больше в ней слабых мест.

Так что, если раньше сосед дядя Вася перебирал двигатель своей «копейки» самостоятельно, но на новеньких современных машинах вряд ли кто-то полезет в тонкую систему ДВС без специального оборудования и инструментов.

И, наконец, нефтяная эра сама по себе отходит в прошлое. Не зря же растут требования к экологической безопасности транспорта, а заодно и эффективность солнечных батарей. Да, бензиновые и дизельные моторы еще не скоро исчезнут с улиц, но уже Европа борется за внедрение электромобилей, благодаря которым человечество когда-нибудь забудет слово «бензиновый смог».

Блок: 6/7 | Кол-во символов: 2352
Источник: https://VazNeTaz.ru/dvigatel-dvs

Такт выпуска

Во время работы последнего такта, открываются выпускные клапаны механизма, через которые удаляются отработанные газы. В дальнейшем выполняется их очистка, снижение шума и охлаждение. Впоследствии чего, газы отправляются в атмосферу.

Если тщательно проанализировать прочитанную информацию, можно понять, почему именно ДВС имеют небольшой коэффициент полезного действия. А именно 40%, именно столько работы выполняется в конкретное время, во время работы одного цилиндра. Остальные в это же время обеспечивают соответственно впуск, сжатие и выпуск.

Блок: 7/7 | Кол-во символов: 561
Источник: https://quest-auto.ru/582-chto-takoe-dvs.html

Заключение

Несмотря на любые недостатки, ДВС остается «главным по транспорту». Химики придумывают новые моторные масла, инженеры разрабатывают новые системы ГРМ, а производители бензина не спешат снижать цены. Всё потому, что с удобством и автономностью привычных нам двигателей пока не может сравниться ни один вид транспорта.

Блок: 7/7 | Кол-во символов: 327
Источник: https://VazNeTaz.ru/dvigatel-dvs
Кол-во блоков: 12 | Общее кол-во символов: 36343
Количество использованных доноров: 4
Информация по каждому донору:

  1. https://auto-pos.ru/181-dvs-chto-eto-takoe-v-mashine.html: использовано 1 блоков из 3, кол-во символов 17094 (47%)
  2. https://VazNeTaz.ru/dvigatel-dvs: использовано 5 блоков из 7, кол-во символов 13678 (38%)
  3. https://quest-auto.ru/582-chto-takoe-dvs.html: использовано 4 блоков из 7, кол-во символов 1686 (5%)
  4. https://wikers.ru/articles/ustrojstvo-dvigatelya.html: использовано 1 блоков из 4, кол-во символов 3885 (11%)


Поделитесь в соц.сетях:

Оцените статью:

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Добавить комментарий